Abstract

An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a ‘coarse-grained’ image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature—latitude overturning stream function. A sensitivity analysis examines the heat transport response to changes in wind stress at different latitudes. The results are compared with results from an eddy-permitting global circulation model. The westerly wind stress over the Southern Ocean has two effects: a local reduction of the surface heat loss in response to the equatorward surface Ekman drift, and a global re-routing of the heat export from the Indo-Pacific. Without wind forcing, the Indo-Pacific heat export is released to the atmosphere in the Southern Ocean, and the net heat transport in the southern Atlantic is southward. With wind forcing, the Indo-Pacific export enters the Atlantic through the Aghulas and is released in the Northern Hemisphere. The easterlies enhance the poleward heat transport in both basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call