Abstract

A search of Magellan synthetic aperture radar images covering ∼98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejects deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 Km 2. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.