Abstract

Four primocane-fruiting (PF) red raspberry cultivars, Bogong, Autumn Cascade, Heritage and Dinkum, were grown in exposed or sheltered (50% permeable artificial windbreak) sites fully exposed to prevailing winds in Bouctouche, NB. Shelters were erected at the beginning and removed at the end of each growing season. In the establishment year, all cultivars were evaluated to determine the effects of wind stress on their vegetative and reproductive development and leaf gas exchange. since all cultivars responded similarly to the effect of wind in year one, only Dinkum was monitored in years two and three. In all years, the artificial windbreak resulted in an overall 35% reduction in wind velocity, increased the number of calm days (<5.4 km h−1) and decreased the incidence of strong breezes (>36 km h−1). Interestingly in this maritime climate, the artificial windbreak did not have much of an effect on altering relative humidity, vapour pressure deficits, or air or soil temperature. Plants from sheltered sites consistently had greater above-ground biomass (especially cane dry weight) and longer cane internodes. For two of the three years, leaf area and yield were also greater in the sheltered sites. Leaf gas exchange parameters (Pn, gs and Ci), expressed per unit of leaf area, did not differ between treatments for most of the season, but the sheltered plants retained more leaf area and thus had the potential to fix a greater amount of carbon than the exposed plants. The larger, sheltered plants produced a more extensive fruiting framework, which resulted in increased yields in both the establishment and subsequent year. It is recommended to shelter raspberry plants from wind in the initial establishment years. Key words: Rubus idaeus L., fall-bearing, autumn fruiting, windbreak

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.