Abstract

This paper presents a new model for optimal trading of wind power in day-ahead (DA) electricity markets under uncertainty in wind power and prices. The model considers settlement mechanisms in markets with locational marginal prices (LMPs), where wind power is not necessarily penalized from deviations between DA schedule and real-time (RT) dispatch. We use kernel density estimation to produce a probabilistic wind power forecast, whereas uncertainties in DA and RT prices are assumed to be Gaussian. Utility theory and conditional value at risk (CVAR) are used to represent the risk preferences of the wind power producers. The model is tested on real-world data from a large-scale wind farm in the United States. Optimal DA bids are derived under different assumptions for risk preferences and deviation penalty schemes. The results show that in the absence of a deviation penalty, the optimal bidding strategy is largely driven by price expectations. A deviation penalty brings the bid closer to the expected wind power forecast. Furthermore, the results illustrate that the proposed model can effectively control the trade-off between risk and return for wind power producers operating in volatile electricity markets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.