Abstract

To improve the accuracy of short-term wind power prediction, a short-term wind power prediction model based on the LSTM model and multiple error correction is proposed. First, an affine wind power correction model based on assimilative migration is established to reduce the errors caused by false positives from the initial data. Then, a self-moving window LSTM prediction model based on the improved particle swarm optimization algorithm was established. By improving the particle swarm optimization algorithm, the optimal hidden neuron number and the optimal learning rate of the LSTM model were calculated to enhance the model’s accuracy. Definitively, the idea of error feedback prediction is used to correct the initial prediction error, and the prediction error is fed back to the LSTM model to reduce the error caused by the calculation of the LSTM model. By starting from the initial data error, model accuracy error, and model prediction error, multiple error correction of wind power is realized to improve the model accuracy. The simulation results show that the method improves the model’s prediction accuracy by using assimilative transfer and error feedback, contributing to the economic operation and sustainable development of the power system. Unlike traditional improvement ideas, the proposed improvement ideas do not involve the inherent characteristics of the original prediction methods. This method does not need to introduce other auxiliary methods and has good universality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call