Abstract

AbstractThis study examines a new approach for short‐term wind speed and power forecasting based on the mixture of Gaussian hidden Markov models (MoG‐HMMs). The proposed approach focuses on the characteristics of wind speed and power in the consecutive hours of previous days. The proposed method is carried out in two steps. In the first step, for the hourly prediction of wind speed, several wind speed features are employed in MoG‐HMM, and in the second step, the results obtained from the first step along with their characteristics and wind power features are used to predict wind power estimation. To increase the prediction accuracy, the data used in each step are classified, and then for each class, one HMM with its specific parameters is used. The performance of the proposed approach is examined using real NREL data. The results show that the proposed method is more precise than other examined methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.