Abstract

Large-scale wind power grid connection increases the uncertainty of the power system, which reduces the economy and security of power system operations. Wind power prediction technology provides the wind power sequence for a period of time in the future, which provides key technical support for the reasonable development of the power generation plan and the arrangement of spare capacity. For large-scale wind farm groups, we propose a cluster model of wind power prediction based on multi-task learning, which can directly output the power prediction results of multiple wind farms. Firstly, the spatial and temporal feature matrix is constructed based on the meteorological forecast data provided by eight wind farms, and the dimensionality of each attribute is reduced by the principal component analysis algorithm to form the spatial fusion feature set. Then, a network structure with bidirectional gated cycle units is constructed, and a multi-output network structure is designed based on the Multi-gate Mixture-of-Experts (MMoE) framework to design the wind power group prediction model. Finally, the data provided by eight wind farms in Jilin, China, was used for experimental analysis, and the predicted average normalized root mean square error is 0.1754, meaning the prediction precision meets the scheduling requirement, which verifies the validity of the wind power prediction model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call