Abstract
The development and practical implementation aspects of a novel scheme for fast power control of the doubly-fed reluctance generator with a low-cost partially-rated converter, a promising brushless candidate for limited speed ranges of wind turbines, are presented in this paper. The proposed concept is derived from the fundamental dynamic analogies between the controllable and measurable properties of the machine: electro-magnetic torque and electrical power, and flux and reactive power. The algorithm is applied in a stationary reference frame without any knowledge of the machine parameters, including rotor angular position or velocity. It is then structurally simpler, easier to realize in real-time and more tolerant of the system operating uncertainties than model-based or proportional-integral control alternatives. Experimental results have demonstrated the excellent controller response for a variety of speed, load and/or power factor states of a custom-built generator prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.