Abstract

The purpose of this study was to examine the characteristics of wind noise at the output of in-the-ear, in-the-canal, and completely-in-the-canal hearing aids. The hearing aids were programed to have linear amplification with matching flat frequency responses for directional (DIR) and omnidirectional (OMNI) microphones. The microphone output was then recorded in a quiet wind tunnel when the Knowles electronic manikin for acoustic research (KEMAR) head was turned from 0 degrees to 360 degrees . The overall, 125, 500, and 2000 Hz one-third octave band flow noise levels were calculated and plotted in polar patterns. Correlation coefficients, average differences, and level differences between DIR and OMNI were also calculated. Flow noise levels were the highest when KEMAR was facing the direction of the flow and angles between 190 degrees and 250 degrees . The noise levels were the lowest when the hearing aids were facing the direction of the flow. The polar patterns of DIR and OMNI had similar shapes and DIR generally had higher levels than OMNI. DIR, however, could have lower levels than OMNI in some angles because of its capability to reduce noise in the far field. Comparisons of polar characteristics with behind-the-ear hearing aids, and clinical and engineering design applications of current results are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.