Abstract

Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48x104 genome copies/m3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

Highlights

  • Avian influenza A viruses are highly heterogeneous, with varying pathogenicity across different species

  • Pathogenicity of the virus in chickens is related to the pathotype: low-pathogenic avian influenza (LPAI) viruses can contain any type of HA, while highly pathogenic avian influenza (HPAI) viruses invariably contain H5 or H7 [1]

  • Influenza virus recovery measured by reverse transcriptase PCR (RT-PCR) was 10% when Teflon filters were processed by using method A, but recovery increased to 43% in the absence of enzyme treatment

Read more

Summary

Introduction

Avian influenza A viruses are highly heterogeneous, with varying pathogenicity across different species. They are classified into subtypes based on the surface glycoproteins haemagglutinin (HA) and neuraminidase (NA). Avian influenza virus is primarily transmitted through fecally contaminated surface water in shared aquatic habitats. In these habitats, the viruses can persist for extended periods, depending on water temperature and physico-chemical characteristics [2]. Virus-contaminated droppings serve as source of infection for susceptible birds, and influenza viruses can remain infectious for many days in poultry litter [4, 5]. Detection of influenza A virus in air measurements collected within farms suggest that particulate matter from infected poultry may play a role in avian influenza virus transmission to humans and birds, and other animals [7, 8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.