Abstract

Context. The structure of the wind from the cool giants in symbiotic binaries carries important information for understanding the wind mass transfer to their white dwarf companions, its fuelling, and thus the path towards different phases of symbiotic-star evolution. Aims. In this paper, we indicate a non-spherical distribution of the neutral wind zone around the red giant (RG) in the symbiotic binary star, EG And. We concentrate in particular on the wind focusing towards the orbital plane and its asymmetry alongside the orbital motion of the RG. Methods. We achieved this aim by analysing the periodic orbital variations of fluxes and radial velocities of individual components of the Hα and [O III] λ5007 lines observed on our high-cadence medium (R ∼ 11 000) and high-resolution (R ∼ 38 000) spectra. Results. The asymmetric shaping of the neutral wind zone at the near-orbital-plane region is indicated by: (i) the asymmetric course of the Hα core emission fluxes along the orbit; (ii) the presence of their secondary maximum around the orbital phase φ = 0.1, which is possibly caused by the refraction effect; and (iii) the properties of the Hα broad wing emission originating by Raman scattering on H0 atoms. The wind is substantially compressed from polar directions to the orbital plane as constrained by the location of the [O III] λ5007 line emission zones in the vicinity of the RG at/around its poles. The corresponding mass-loss rate from the polar regions of ≲10−8 M⊙ yr−1 is a factor of ≳10 lower than the average rate of ≈10−7 M⊙ yr−1 derived from nebular emission of the ionised wind from the RG. Furthermore, it is two orders of magnitude lower than that measured in the near-orbital-plane region from Rayleigh scattering. Conclusions. The startling properties of the nebular [O III] λ5007 line in EG And provides an independent indication of the wind focusing towards the orbital plane – the key to understanding the efficient wind mass transfer in symbiotic binary stars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.