Abstract
At present, there are increasingly encountering the use of lamellar structures, for example on the roofs of buildings, which, in addition to their visual function, also fulfil the function of reducing the flow of wind into the roof space. These structures are often designed as long and subtle structures and therefore their very common problem is unwanted vibration. In this article, the main focus is to show the methodology of the determination of the effects of wind on the lamella of the shape of an irregular pentagon. A real-size model made of steel with a total length of 2 m and a weight of 7.4 kg was used. Its size and shape were influenced by several factors which are specified in more detail in the paper. In the wind tunnel experiment, it was very important to ensure the exact position of the model and also to secure both ends of the model against shifting (to replicate fixed ends). Dynamic response of the structure in two directions together with wind speed were measured simultaneously. To investigate the wind effects by numerical analysis, fluid-structure interaction software simulation (FSI) on a full-size model was used. The main pitfall of the software solution was to get as close as possible to the conditions of the wind tunnel. The actual wind speed measured under laboratory conditions was used as the input wind speed for FSI simulation. The material of the model and the shape of the model was set in software simulation to be as close as possible to the real structure. Subsequently, other boundary conditions were set and the solution process was executed. The biggest problem, especially in terms of comparing the results of both approaches which greatly affected the results, was the very high stiffness of the model. Due to the extent and interconnectedness of results, findings are presented in more detail in the conclusions of the paper. The methodology of setting up a relatively complex FSI simulation, its results, as well as new findings that we came up with if the measurement of the dynamic effects of wind is the matter of interest are presented in this paper.
Highlights
The actual wind speed measured under laboratory conditions was used as the input wind speed for fluid-structure interaction software simulation (FSI) simulation
The methodology of setting up a relatively complex FSI simulation, its results, as well as new findings that we came up with if the measurement of the dynamic effects of wind is the matter of interest are presented in this paper
The main focus of this paper is to show the methodology of the determination of the effects of wind on the lamella in the shape of an irregular pentagon
Summary
The main focus of this paper is to show the methodology of the determination of the effects of wind on the lamella in the shape of an irregular pentagon. To investigate the wind effects by numerical analysis, fluid-structure interaction software simulation (FSI) on a full-size model was used. The material of the model and the shape of the model was set in software simulation to be as close as possible to the real structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.