Abstract

Responses of an asymmetrical base-isolated building during the passage of Typhoon Roke 2011, Typhoon Guchol 2012 and a bomb cyclone strong-wind event on April 3, 2012 were investigated in this paper. Wind-induced accelerations of the building were recorded by dense array permanent monitoring system and analyzed in detailed by spectra analysis, time-frequency wavelet analysis and system identification. Results of analysis revealed that wind-induced responses of the buildings were dominated by the first mode which is the fundamental flexural mode coupled with torsion of the upper stories. Building responses demonstrated non-linear characteristics of natural frequencies, damping ratio and mode-shapes. Natural frequencies of fundamental modes decreased with the increase of acceleration amplitude, with the maximum reduction of 8–10% of natural frequencies observed during the peak wind speed. Damping estimates of the fundamental modes increased with the increase of accelerations, while characteristics of mode-shapes were also found to be dependent on the wind speed. Further analysis revealed that non-linear characteristics of building responses are related to isolator deformations caused by wind-induced static force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.