Abstract
Wind pressure measurements were carried out for dome roofs with different rise–span ratios (f/L = 1/4,1/6,1/8) in a boundary wind tunnel. A parametric study was conducted to investigate the influences of wind loading and structural parameters on the wind-induced response and the universal equivalent static wind loads (ESWLs) of single-layer reticular dome shells, including the span, rise–span ratio, roof mass and the mean wind velocity. Results show that the rise–span ratio has a significant influence on the wind pressure distribution of the roof. High suction appears at the top of the roof with a larger rise–span ratio f/L = 1/4, and it appears at the top and leading edge when f/L is 1/6 or 1/8. Many vibration modes should be included to analyze the wind-induced response of dome roof structures, and this makes it very difficult to analyze the ESWL. The resonant response is larger than the background response. A method to calculate the universal ESWL for the building code is proposed for easy understanding by practicing engineers. Based on the distribution characteristics of the ESWL, simple fundamental vectors are constructed to recalculate the universal ESWL. This method is employed to divide the dome roof into four zones, and it also means that four fundamental vectors are used to evaluate the ESWL. Simplified expressions of universal ESWL in these four roof zones are proposed for the engineering design. All nodal displacements and structural member stresses under the universal ESWL agree well with actual peak responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.