Abstract

The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call