Abstract

AbstractTransmission system operation with wind generators has been well analyzed for issues like forecasting, reliability, control, power quality, and fault ride through (FRT) impacts following large-scale integration. However, there are still no standardized protection schemes for wind farms such as those practiced for the protection of conventional generation plants. Wind generators' collective response under high penetration scenarios needs special attention especially under abnormal operations such as grid disturbances and faults. During abnormal grid situations like faults, protection requirements for wind farms depend on a variety of factors. Different wind generation technologies exhibit different dynamic characteristics compared to conventional synchronous generator plants. Network characteristics and their interaction with available wind technologies also impact the fault behavior. This chapter first comprehensively reviews the integration characteristics and criteria for three different wind generator technologies connected to high voltage (HV) transmission systems. Aspects such as selection of time step and impact of additional controls such as crowbar protection are also discussed with their possible impacts on fault current estimation. A case study in DIgSILENT® PowerFactory has been developed to assess and compare the fault response of wind generator technology types. The response of each WTG type is generalized and analyzed in time domain to determine the number of electrical frequency cycles before the fault current reaches to steady-state value. Based on the estimated number of cycles and in the scenario of weaker interconnecting grids, protection schemes performance and protection relay operation are mainly assessed for each wind turbine generator (WTG) type. Technical challenges and difficulties are also highlighted before concluding.KeywordsWind generatorsLow voltage ride through

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.