Abstract

The power generation of a wind farm depends on the efficiency of the individual wind turbines of the farm. In large wind farms, wind turbines usually affect each other aerodynamically at some specific wind directions. Previous studies suggest that a way to maximize the power generation of these wind farms is to reduce the generation of the first rows wind turbines to allow the next rows to generate more power (coordinated case). Yet, other studies indicate that the maximum generation of the wind farm is reached when every wind turbine works at its individual maximum power coefficient CPmax (individual case). This article studies this paradigm and proposes a practical method to evaluate when the wind farm needs to be controlled according to the individual or the coordinated case. The discussion is based on basic principles, numerical computations, and wind tunnel experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.