Abstract

The Horse Heaven Hills of south-central Washington is the driest rainfed wheat growing region in the world. Low precipitation, high winds, poorly aggregated soils, sparse residue cover, and a tillage-based winter wheat (Triticum aestivum L.) – summer fallow (WW-SF) cropping system often combine to create soil surfaces which are susceptible to wind erosion. No-tillage summer fallow (NTF) and conservation tillage fallow (CTF) with an undercutter sweep implement were examined as alternative practices to traditional tillage fallow (TTF) with a tandem disk implement for reducing wind erosion and PM10 (particulate matter ≤10μm in aerodynamic diameter) emissions during the fallow phase of the WW-SF rotation. Wind erosion and PM10 emissions were assessed with a wind tunnel after primary spring tillage in mid-to-late April and after sowing winter wheat in August. Sediment loss and PM10 vertical flux and loss were generally less for NTF than with TTF, likely due to retention of surface residue and maintaining a soil crust in NTF. Sediment and PM10 loss increased after sowing wheat in both the TTF and CTF treatments. Although NTF abated the loss of sediment and PM0 compared with TTF, NTF is not yet an economical option for most growers in the region. Conservation tillage fallow using the undercutter sweep is an economically viable alternative to TTF for reducing windblown sediment and PM10 loss from agricultural soils in the Horse Heaven Hills.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call