Abstract
AbstractWind energy is crucial in the global shift towards a sustainable energy system. Thus, this research innovatively addresses the challenges in wind energy system fault classification and detection, emphasising the integration of robust machine learning methodologies. Our study focuses on enhancing fault management through supervisory control and data acquisition (SCADA) systems, addressing imbalanced data representation issues and error vulnerabilities. A key innovation lies in applying particle swarm optimisation‐tuned extreme gradient boosting (XGBoost) on imbalanced SCADA datasets, combining resampled SCADA data with deep learning features produced by deep convolutional neural networks. The novel use of PSO‐XGBoost showcases effectiveness in optimising parameters and ensuring model robustness. Furthermore, our research contributes to supervised and unsupervised anomaly detection models using Seasonal‐Trend decomposition using locally estimated scatterplot smoothing and PSO‐XGBoost, presenting substantial advancements in fault classification and prediction metrics. Overall, the study offers a unique, integrated framework for fault management, demonstrating improved reliability in predictive maintenance architectures. Lastly, it highlights the transformative potential of advanced machine learning in enhancing sustainability within efficient and clean energy production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.