Abstract

The Guangzhou International Convention & Exhibition Center (GICEC) with roof dimensions of 210 m wide and 457 m long is the largest exhibition center in Asia and the 2nd largest of this kind in the world. This paper presents results from a combined study of wind tunnel test, full-scale measurement, and numerical analysis of wind effects on the long-span beam string roof structure. In the wind tunnel test, wind-induced pressures including mean and fluctuating components were measured from the roof of a 1:300 scale GICEC model under suburban boundary layer wind flow configuration. The Proper Orthogonal Decomposition (POD) method and the quasi-steady approach as well as probability analysis were adopted to estimate the characteristics of the fluctuating wind pressures on the roof. On the other hand, full-scale measurements of wind actions and wind-induced structural responses of the roof were conducted during the passage of Typhoon Nuri. The field data such as wind speed, wind direction, and acceleration responses, etc., were continuously and simultaneously monitored from a wind and structural response monitoring system installed on the roof structure during the typhoon. Detailed analysis of the field data was performed to investigate the characteristics of the typhoon-generated wind and the wind-induced vibration of the long-span roof structure under typhoon condition. The dynamic characteristics of the roof were determined from the field measurements and comparisons with those calculated from the finite element model (FEM) of the structure were made. The damping ratios of the roof structure were estimated by means of the random decrement method and the amplitude-dependent damping characteristics were presented and discussed. Finally, the full-scale measurements were compared with the model test results to examine the accuracy of the wind tunnel test results and to identify possible modelling errors in the numerical study. The results presented in this paper are expected to be of considerable interest and of use to researchers and professionals involved in designing long-span roof structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call