Abstract

This article deals with the ocean circulation driven by steady zonal winds, and damped by bottom and biharmonic friction, when represented by the simple barotropic vorticity equation. A double gyre antisymmetrical wind stress pattern in a square basin is considered. Wind forcing and dissipation parameters are chosen within the ranges of what has been used in previous studies. The flow characteristics for both steady and unsteady situations are tentatively described as functions of model external parameters through the analysis of a large set of numerical experiments. Functional relations are derived for the mid-latitude jet parameters (length, width and transport) on the basis of scaling arguments. With the diagrams established for these quantities in forcing and dissipation parameter relations allow quantitative predictions of model response to a wide range of parameter choices to be made. The transition to barotropic instability is interpreted by analysing and comparing the spin-up phase of different numerical experiments leading either to stable or unstable solutions. Two major types of destabilization are identified, namely through meandering of the mid-latitude eastward jet and Rossby wave radiation from the westward return flow. The characteristics of the flows are shown to be highly sensitive to the external parameter changes. Competition between eddy kinetic energy level and eastward jet extension appears to consttitute the key point of this class of solutions, controlling in particular the intensity of transport in the inner gyres, driven by the eddy field on the two sides of the mid-basin jet, in a very similar manner to that of the more complex multilayered EGCMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.