Abstract

A large eddy simulation (LES) model was used to examine the wind-driven cross ventilation of gable-roof greenhouses containing vegetation. The obstruction of air flow by vegetation was described by a porous drag model in the numerical model, and the simulation results were validated using wind tunnel experiments. The numerical model was then utilised to inspect the influences of vegetation and greenhouse length (in the wind direction) on the ventilation rate. The results revealed that the diminishing effects of the vegetation, insect screen and internal friction on the ventilation rate can all be quantified by a physical-based resistance model. The driving force (the difference between windward and leeward pressures) of long, multi-span greenhouses was found to be less than that of a short, single-span greenhouse leading to a lower ventilation rate. The resistance factor of the vegetation and the insect screen depends on their porosity, while the resistance factor of the internal friction increased as the greenhouse length increased. In addition, the internal friction of multi-span greenhouses should be considered when the length of the greenhouse was greater than six times the greenhouse height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.