Abstract

This study presents a method to adjust the waypoints of an unpowered air vehicle to compensate for the influence of wind on the trajectory. A framework combining preflight waypoint planning and inflight waypoint adjustment is proposed. In the offline planning phase, optimal trajectories under various wind profile combinations are generated by using a direct optimization method. Waypoints are extracted from the obtained trajectories for each wind condition. Then, deviations of each waypoint due to wind from the corresponding waypoint on the trajectory for a zero-wind case are obtained; these deviations are used to construct the models of waypoint deviation as functions of wind speed and direction via least-squares regression. In the online adjustment phase, the wind-compensated waypoint is computed using the waypoint deviation model and the estimated wind velocity. A nonlinear six degrees-of-freedom simulation, incorporating a guidance and control system and a realistic wind profile, is performed to demonstrate the effectiveness of the proposed waypoint management framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call