Abstract

As small-scale fading is a spatial phenomenon, the movement of objects in the environment around static sensor nodes can induce significant fades. However, there have not been many works characterizing small-scale fading due to environmental factors for ground-surface wireless communications. We first measure the temporal fading characteristics experienced by antennas located just 1.5 cm above the surface of the ground due to wind-blown foliage or human movement in the environment for a narrowband channel in the 400-MHz frequency band. We then compare the extracted data to existing distributions and show that fading due to wind-blown foliage can be modeled as a Nakagami- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</i> distribution, with wind speed and excess path-loss-dependent <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</i> shape factors. The α-μ distribution best characterizes the small-scale fading of a single human pedestrian, which is shown to have a repeatable pattern and can be up to 40 dB below the no-fading mean, whereas the Rician distribution, with an excess path-loss-dependent <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</i> -factor, can be used to characterize fading from multiple human pedestrians. We also report the second-order statistics of the average fade duration and the level crossing rate for fading caused by wind-blown foliage and multiple human pedestrians. Finally, we discuss the significance of the results on wireless sensor network protocol design and applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call