Abstract

A system of Honeycomb Flat Plate (HFP) grid and cylindrical rods has been developed to accelerate the growth of a thick (32 cm) turbulent boundary layer, artificially, over rough floor of a low speed short test-section (0.61 m x 0.61 m) wind tunnel. Simulated profiles of wind velocity, longitudinal turbulence intensity and Reynolds stress are shown to have similarity to those of a neutral atmospheric boundary layer over a typical rural terrain. Longitudinal spectrum of turbulence measured at 10,30 and 100 mm above tunnel floor is shown to compare well with atmospheric spectrum and agree closely with the Kolmogoroff's -2/3 law in the inertial sub-range of the spectrum. Based on the length scale of longitudinal turbulence estimated from the spectrum, a scale of 1 :900 has been proposed for laboratory modeling of environmental problems wherein the transport of mass in a neutral atmospheric surface layer IS solely due to eddies of mechanical origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.