Abstract

The problem of gravitational fluctuations confined inside a finite cutoff at radius $r=r_c$ outside the horizon in a general class of black hole geometries is considered. Consistent boundary conditions at both the cutoff surface and the horizon are found and the resulting modes analyzed. For general cutoff $r_c$ the dispersion relation is shown at long wavelengths to be that of a linearized Navier-Stokes fluid living on the cutoff surface. A cutoff-dependent line-integral formula for the diffusion constant $D(r_c)$ is derived. The dependence on $r_c$ is interpreted as renormalization group (RG) flow in the fluid. Taking the cutoff to infinity in an asymptotically AdS context, the formula for $D(\infty)$ reproduces as a special case well-known results derived using AdS/CFT. Taking the cutoff to the horizon, the effective speed of sound goes to infinity, the fluid becomes incompressible and the Navier-Stokes dispersion relation becomes exact. The resulting universal formula for the diffusion constant $D(horizon)$ reproduces old results from the membrane paradigm. Hence the old membrane paradigm results and new AdS/CFT results are related by RG flow. RG flow-invariance of the viscosity to entropy ratio $\eta /s$ is shown to follow from the first law of thermodynamics together with isentropy of radial evolution in classical gravity. The ratio is expected to run when quantum gravitational corrections are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.