Abstract

A generalization of the well-known Wilson–Cowan model of excitatory and inhibitory interactions in localized neuronal populations is presented, by taking into consideration distributed time delays. A stability and bifurcation analysis is undertaken for the generalized model, with respect to two characteristic parameters of the system. The stability region in the characteristic parameter plane is determined and a comparison is given for several types of delay kernels. It is shown that if a weak Gamma delay kernel is considered, as in the original Wilson–Cowan model without time-coarse graining, the resulting stability domain is unbounded, while in the case of a discrete time delay, the stability domain is bounded. This fact reveals an essential difference between the two scenarios, reflecting the importance of a careful choice of delay kernels in the mathematical model. Numerical simulations are presented to substantiate the theoretical results. Important differences are also highlighted by comparing the generalized model with the original Wilson–Cowan model without time delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.