Abstract
AbstractLattice gauge theories are lattice approximations of the Yang–Mills theory in physics. The abelian lattice Higgs model is one of the simplest examples of a lattice gauge theory interacting with an external field. In a previous paper (Forsström et al. in Math Phys 4(2):257–329, 2023), we calculated the leading order term of the expected value of Wilson loop observables in the low-temperature regime of the abelian lattice Higgs model on $${\mathbb {Z}}^4,$$ Z 4 , with structure group $$G = {\mathbb {Z}}_n$$ G = Z n for some $$n \ge 2.$$ n ≥ 2 . In the absence of a Higgs field, these are important observables since they exhibit a phase transition which can be interpreted as distinguishing between regions with and without quark confinement. However, in the presence of a Higgs field, this is no longer the case, and a more relevant family of observables are so-called open Wilson lines. In this paper, we extend and refine the ideas introduced in Forsström et al. (Math Phys 4(2):257–329, 2023) to calculate the leading order term of the expected value of the more general Wilson line observables. Using our main result, we then calculate the leading order term of several natural ratios of expected values and confirm the behavior predicted by physicists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.