Abstract
An orthonormal set of functions is defined on a von Neumann lattice in phase space. There is one function assigned to each unit cell of area h. The functions are of the Wilson type in that in the x-direction they are obtained from one another by uniform translations, while in the p-direction they are double-peaked, and cannot be obtained by translations. A similar construction is also carried out with the x- and p-axes interchanged. The results apply to any dimension. An explicit example is worked out for the ground state of a harmonic oscillator, and a relation to coherent states is pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.