Abstract
AbstractMolecular mechanisms for the developmental stage and tissue-specific regulation of the erythropoietin (EPO) gene are poorly understood. Recent findings indicate a role of the Wilms tumor suppressor, Wt1, in the formation of the hematopoietic system. Herein, we tested the hypothesis that Wt1 is a transcriptional regulator of the EPO gene. Binding of the transcriptionally competent Wt1(–KTS) isoform to the minimal EPO promoter was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation. Under normoxia, EPO expression was significantly increased in HEK 293 and HepG2 cells with forced expression of Wt1(–KTS). A reporter construct harboring the 117-bp minimal human EPO promoter was activated up to 20-fold by transient cotransfection of Wt1(–KTS) in different cell lines. Mutation of the Wt1 binding site in the EPO promoter abrogated this stimulatory effect of the Wt1(–KTS) protein. Hepatic Epo mRNA expression was significantly reduced in embryonic mice with homozygous Wt1 deletion. Furthermore, Wt1 and EPO were colocalized in hepatocytes of the liver and in neuronal cells of the dorsal root ganglia in developing mice. Both proteins were also detected in Sertoli cells of the adult murine testis. In conclusion, we identified Wt1(–KTS) as a novel transcriptional activator for the tissue-specific expression of the EPO gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.