Abstract
Wilms tumor protein 1 (WT1) has been implicated in the control of several genes in sexual development, but its function in gonad formation is still unclear. Here, we report that WT1 stimulates expression of Kdr, the gene encoding VEGF receptor 2, in murine embryonic gonads. We found that WT1 and KDR are co-expressed in Sertoli cells of the testes and somatic cells of embryonic ovaries. Vivo-morpholino-mediated WT1 knockdown decreased Kdr transcripts in cultured embryonic gonads at multiple developmental stages. Furthermore, WT1 bound to the Kdr promoter in the chromatin of embryonic testes and ovaries. Forced expression of the WT1(-KTS) isoform, which functions as a transcription factor, increased KDR mRNA levels, whereas the WT1(+KTS) isoform, which acts presumably on the post-transcriptional level, did not. ChIP indicated that WT1(-KTS), but not WT1(+KTS), binds to the KDR promoter. Treatment with the KDR tyrosine kinase inhibitor SU1498 or the KDR ligand VEGFA revealed that KDR signaling represses the testis-promoting gene Sox9 in embryonic XX gonads. WT1 knockdown abrogated the stimulatory effect of SU1498-mediated KDR inhibition on Sox9 expression. Exposure to 1% O2 to mimic the low-oxygen conditions in the embryo increased Vegfa expression but did not affect Sox9 mRNA levels in gonadal explants. However, incubation in 1% O2 in the presence of SU1498 significantly reduced Sox9 transcripts in cultured testes and increased Sox9 levels in ovaries. These findings demonstrate that both the local oxygen environment and WT1, which enhances KDR expression, contribute to sex-specific Sox9 expression in developing murine gonads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.