Abstract

BackgroundWilms’ tumor 1-associating protein (WTAP) is a ubiquitously expressed nuclear protein, and involved in multiple pathophysiological processes, including cell cycle, RNA splicing and stabilization, N6-methyladenosine RNA modification, cell proliferation, and apoptosis as well as embryonic development. Here, we investigated the specific role of WTAP in the pathogenesis of psoriasis and its underlying mechanism. MethodsReverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analyses and multi-spectrum immunohistochemistry were applied to evaluate the level of WTAP expression in psoriatic skin and normal skin. HaCaT cells was stably transfected with WTAP small interfering (si)RNA and plasmid using Lipofectamine®2000 and proliferation was determined by CCK8. Apoptosis and cell cycle analysis were conducted by flow cytometry. Western blot assay was used to explore the expression levels of cell cycle-related proteins in HaCaT cells after WTAP overexpression or inhibition. Furthermore, HaCaT cells were stimulated with proinflammatory cytokines (ie, IL-17A, IL-22, IL-1a, oncostatin M, and TNF-a) to assess WTAP expression. ResultsWe demonstrated that the mRNA and protein levels of WTAP were significantly increased in lesional skins of psoriasis patients and psoriatic cell model compared with normal controls. WTAP was highly expressed in epidermis rather than dermis. Overexpression of WTAP promoted keratinocytes proliferation, which might be related to the up-regulation of cyclinA2 and CDK2. ConclusionsThese results indicate that overexpression of WTAP may contribute to the pathogenesis of psoriasis by regulating cell cycle progression and highlight WTAP as a potential therapeutic target for psoriasis treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.