Abstract

This paper presents the willow tree algorithms for pricing variable annuities with Guaranteed Minimum Withdrawal Benefits (GMWB), where the underlying fund dynamics evolve under the Merton jump-diffusion process or constant-elasticity-of-variance (CEV) process. The GMWB rider gives the policyholder the right to make periodic withdrawals from his policy account throughout the life of the contract. The dynamic nature of the withdrawal policy allows the policyholder to decide how much to withdraw on each withdrawal date, or even to surrender the contract. For numerical valuation of the GMWB rider, we use willow tree algorithms that adopt more effective placement of the lattice nodes based on better fitting of the underlying fund price distribution. When compared with other numerical algorithms, like the finite difference method and fast Fourier transform method, the willow tree algorithms compute GMWB prices with significantly less computational time to achieve a similar level of numerical accuracy. The design of our pricing algorithm also includes an efficient search method for the optimal dynamic withdrawal policies. We perform sensitivity analysis of various model parameters on the prices and fair participating fees of the GMWB riders. We also examine the effectiveness of delta hedging when the fund dynamics exhibit various jump levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.