Abstract
A recent result of Schmidt has brought Williamson matrices back into the spotlight. In this article, a new algorithm is introduced to search for hard to find Williamson matrices. We find all nonequivalent Williamson matrices of odd order n up to n = 59. It turns out that there are none for n = 35, 47, 53, 59 and it seems that the Turyn class may be the only infinite class of these matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.