Abstract

The theory of the third-order-polynomial (TOP) and fifth-order-polynomial (FOP) magnetization transitions is presented. These transitions have a finite length, rather than an asymptotic approach to /spl plusmn/M/sub r/., which is the case with some widely-used transition functions. The Williams-Comstock model is used to obtain the transition parameters, which are equal to half the transition lengths, resulting in quadratic equations and simple expressions. In this analysis, the write-field gradient is maximized with respect to the deep-gap field, as well as with respect to the distance of the transition from gap center, which results in a higher gradient than is obtained with the original Williams-Comstock approach, at the expense of a higher write current. Analytic expressions are obtained for the read pulses of inductive and shielded magnetoresistive heads, and equations for nonlinear transition shift are derived for the arctangent and the TOP transitions. The results are compared with those obtained using arctangent and tanh transitions and with experiment. In addition, certain aspects of the write-process Q function and the optimum deep-gap field are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.