Abstract

In this letter we investigate data-driven predictive control of discrete-time linear descriptor systems. Specifically, we give a tailored variant of Willems’ fundamental lemma, which shows that for descriptor systems the non-parametric modeling via a Hankel matrix requires less data compared to linear time-invariant systems without algebraic constraints. Moreover, we use this description to propose a data-driven framework for optimal control and predictive control of discrete-time linear descriptor systems. For the latter, we provide a sufficient stability condition for receding-horizon control before we illustrate our findings with an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.