Abstract

A major impediment to gravity wave detection in interferometer detectors such as Laser Interferometer Gravitational Wave Observatory (LIGO) is nongravitational wave-induced motion of the test masses. All types of noise sources including environmental sources contribute to this problem. Seismic motion is a significant source of such motion. I introduce a method to quantify the contribution of a given noise source to motion that is most deleterious to gravity wave detection, e.g., motion that mimics gravity wave signatures. I define such a benchmark in two senses: A relative benchmark that quantifies the degree of intrinsic interference with the gravity wave detection and an absolute benchmark which incorporates scaling factors appropriate to a given experiment. To give statistical meaning to the method and to illustrate it, I benchmark Gaussian noise and seismic colored Gaussian noise; both benchmark at 0 false events/day, which, applying a simple statistical model, implies ≪1 event for even year-long data runs. Finally, the relative benchmark for seismic noise at the Livingston observatory is (for the band from ∼100–400 Hz), using two 24 h data sets, 40–290 false events/day. Given the LIGO I noise curves, it is shown that the seismic noise should not interfere with the detection of binary inspiral generated gravity waves using optimal filtering. Its absolute benchmark is 0 false events/day, which, applying as above a simple statistical model, implies ≪1 event/year. In rough terms, if only Livingston seismic noise and gravity waves were impinging on the detector, one would expect to see neutron star binary inspiral’s that occur anywhere in the universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.