Abstract
Growing numbers of patients receive azoles as prophylaxis or treatment for invasive fungal infections, begging the question of whether emergence of resistance will occur, as has been seen with bacteria. This review examines resistance pathways shared by bacteria and fungi, including alteration and overproduction of drug targets, changes in biosynthetic pathways, and enhanced drug efflux, and assesses whether such commonalities predict increased resistance to azoles. Important differences exist between the two kingdoms, including little, if any, horizontal transfer of extrachromosomal material across fungal species and a longer fungal generation time, thereby slowing vertical transfer of mutant traits. Further, no enzymatic modulation or inactivation of azoles has been reported in fungi. The newer broad-spectrum azoles posaconazole and voriconazole are active against the vast majority of yeasts and moulds and are likely to prevent the emergence of inherently resistant strains. Therefore, the likelihood for an explosion of fungal resistance is relatively low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Clinical Microbiology & Infectious Diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.