Abstract

BackgroundContinuing compressions during a defibrillation shock has been proposed as a method of reducing pauses in cardiopulmonary resuscitation (CPR) but the safety of this procedure is unproven. The medical examination gloves worn by rescuers play an important role in protecting the rescuer yet the electrical characteristics of these gloves are unknown. This study examined the response of medical examination gloves to defibrillation voltages. MethodsPart 1 of this study measured voltage–current curves for a small sample (8) of gloves. Part 2 tested more gloves (460) to determine the voltage required to produce a specific amount of current flow. Gloves were tested at two current levels: 0.1mA and 10mA. Testing included four glove materials (chloroprene, latex, nitrile, and vinyl) in a single layer and double-gloved. ResultsAll gloves tested in part 1 allowed little current to flow (<1mA) as the voltage was increased until breakdown occurred, at which point current flow increased precipitously. In part 2, 118 of 260 (45%) single gloves and 93 of 120 (77%) double gloves allowed at least 0.1mA of current flow at voltages within the external defibrillation voltage range. Also, 6 of 80 (7.5%) single gloves and 5 of 80 (6.2%) double gloves allowed over 10mA. ConclusionsFew of the gloves tested limited the current to levels proven to be safe. A lack of sensation during hands-on defibrillation does not guarantee that a safety margin exists. As such, we encourage rescuers to minimize rather than eliminate the pause in compressions for defibrillation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call