Abstract
Sediment, as a natural component of rivers, directly affects the abundance and function of phytoplankton by altering water physicochemical properties. Despite mounting evidence for the sensitivity of phytoplankton to environmental factors, the responses of phytoplankton functional groups to complex environmental changes in rivers with a heavy sediment load are still poorly understood. Herein, the effectiveness of phytoplankton functional groups was evaluated as an indicator of aquatic environmental changes in a heavily sediment-laden river. Samples were collected from 44 sites (22 free-flowing river sections and 22 man-made reservoir sections) with a mean annual sediment concentration of 4.69 kg m-3 in the Yellow River, China. A total of 31 phytoplankton functional groups were classified during spring (April-May) and autumn (September-October) in 2019. Groups C, MP, and D, which are well adapted to strong water disturbances and turbid habitats, showed distinct advantages over other groups. Despite no significant differences in many environmental variables between the river and reservoir sections, these variables (especially nitrogen nutrients) had remarkable effects on the phytoplankton community structure. The phytoplankton functional groups were sensitive to environmental changes even under sediment interference, although geo-climatic variables also exhibited non-trivial effects. The mean niche breadth of the abundant taxa (river: 11.16; reservoir: 7.93) was higher than that of the rare taxa (river: 5.64; reservoir: 4.86) in different water bodies. Thus, growth and diffusion of the abundant taxa played paramount roles in maintaining ecosystem stability. The results indicate that, in a large-scale sediment-laden river, phytoplankton functional groups can effectively indicate changes in the aquatic environment of either a free-flowing river or a man-made reservoir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.