Abstract

Antifungal susceptibility testing of Aspergillus species has been standardized by both the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Recent studies suggest the emergence of strains of Aspergillus fumigatus with acquired resistance to azoles. The mechanisms of resistance involve mutations in the cyp51A (sterol demethylase) gene, and patterns of azole cross-resistance have been linked to specific mutations. Studies using the EUCAST broth microdilution (BMD) method have defined wild-type (WT) MIC distributions, epidemiological cutoff values (ECVs), and cross-resistance among the azoles. We tested a collection of 637 clinical isolates of A. fumigatus for which itraconazole MICs were < or = 2 microg/ml against posaconazole and voriconazole using the CLSI BMD method. An ECV of < or = 1 microg/ml encompassed the WT population of A. fumigatus for itraconazole and voriconazole, whereas an ECV of < or = 0.25 microg/ml was established for posaconazole. Our results demonstrate that the WT distribution and ECVs for A. fumigatus and the mold-active triazoles were the same when determined by the CLSI or the EUCAST BMD method. A collection of 43 isolates for which itraconazole MICs fell outside of the ECV were used to assess cross-resistance. Cross-resistance between itraconazole and posaconazole was seen for 53.5% of the isolates, whereas cross-resistance between itraconazole and voriconazole was apparent in only 7% of the isolates. The establishment of the WT MIC distribution and ECVs for the azoles and A. fumigatus will be useful in resistance surveillance and is an important step toward the development of clinical breakpoints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call