Abstract

We evaluated how two large wildfires affected the sedimentation rate and accumulation of lead (Pb), mercury (Hg), and cadmium (Cd) in sediment of four subarctic montane lakes in the Yukon, Canada. The wildfires occurred 60 and 20 years (1958, 1998) before sediment collection in 2018. Site-specific fire exposure was inferred from the charcoal accumulation histories in the lake sediments and the burned catchment area was determined from historical fire maps. The two major wildfires caused a two to five-fold increase in sedimentation rates and a two to eight-fold increase in sediment metal accumulation rates in Little Fox Lake. The mass accumulation rates of metals in Little Fox Lake sediment increased by a maximum of 2.7–4.7 mg Pb m−2 yr−1, 19–29 μg Hg m−2 yr−1 and 37–114 μg Cd m−2 yr−1 following wildfires. Modelling using elemental ratios of lithogenic sources suggested a large proportion of the Pb and Hg accumulating in post-fire sediment was from remobilized legacy anthropogenic pollution. In contrast, Cd fluxes were consistent with variation in catchment weathering. Impacts of wildfires were visible but more muted in the sediment of Little Braeburn Lake, whereas Fox Lake and Grayling Lake sediments showed little to no wildfire impact and served as a reference for external (long-range) metal deposition. Major changes to lake sediment geochemistry in Little Fox Lake were caused by the lack of vegetation and soil recovery in the catchment following the severe 1998 fire. Wildfire impacts were persistent in the lake more than 20 years after the last fire, with no sign of a return to pre-fire Pb, Hg, and Cd accumulation rates. This study shows that wildfires in northern montane catchments can significantly increase the rate of metal accumulation in affected lakes, thereby impeding recovery from reductions in anthropogenic air emissions of these metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.