Abstract
Intense heating by wildfires can generate deep, smoke-infused thunderstorms, known as pyrocumulonimbus (pyroCb), which can release a large quantity of smoke particles above jet aircraft cruising altitudes. Injections of pyroCb smoke into the lower stratosphere have gained increasing attention over the past 15 years due to the rapid proliferation of satellite remote sensing tools. Impacts from volcanic eruptions and other troposphere-to-stratosphere exchange processes on stratospheric radiative and chemical equilibrium are well recognized and monitored. However, the role of pyroCb smoke in the climate system has yet to be acknowledged. Here, we show that the mass of smoke aerosol particles injected into the lower stratosphere from five near-simultaneous intense pyroCbs occurring in western North America on 12 August 2017 was comparable to that of a moderate volcanic eruption, and an order of magnitude larger than previous benchmarks for extreme pyroCb activity. The resulting stratospheric plume encircled the Northern Hemisphere over several months. By characterizing this event, we conclude that pyroCb activity, considered as either large singular events, or a full fire season inventory, significantly perturb the lower stratosphere in a manner comparable with infrequent volcanic intrusions.
Highlights
Fire-triggered thunderstorms, or pyrocumulonimbus, are an extreme weather phenomenon associated with large wildfires at temperate latitudes
Calculations based on the combination of lidar and passive remote sensing observations reveal that this event injected an estimated 0.1–0.3 Tg of total aerosol particle mass into the lower stratosphere (Fig. 1)
The Pacific Northwest Event was comparable to the total stratospheric particle mass injected by the initial plume of a moderate volcanic eruption, characterized by a Volcanic Explosivity Index (VEI) between 3 and 4.9,10 The Kasatochi eruption (VEI of 4) in the Aleutian Islands of Alaska (United States, 7–8 August 2008) serves as a suitable reference event, given its proximity in latitude, occurrence during the same month, and injection to similar stratospheric altitudes
Summary
Fire-triggered thunderstorms, or pyrocumulonimbus (pyroCb), are an extreme weather phenomenon associated with large wildfires at temperate latitudes. We quantify the mass of smoke aerosol particles injected into the lower stratosphere from five near-simultaneous intense pyroCbs observed in western North America on 12 August 2017, referred to hereafter as the “Pacific Northwest Event”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.