Abstract

Rising wildfire incidents in South America, potentially exacerbated by climate change, require an exploration of sustainable approaches for fire risk reduction. This study investigates wildfire-prone meteorological conditions and assesses the susceptibility in Colombia’s megadiverse northern region. Utilizing this knowledge, we apply a machine learning model and the Monte Carlo approach to evaluate sustainability strategies for mitigating fire risk. The findings indicate that a substantial number of fires occur in the southern region, especially in the first two seasons of the year, and in the northeast in the last two seasons. Both are characterized by high temperatures, minimal precipitation, strong winds, and dry conditions. The developed model demonstrates significant predictive accuracy with the HIT, FAR, and POC of 87.9%, 28.3%, and 95.7%, respectively, providing insights into the probabilistic aspects of fire development. Various scenarios showed that a decrease in soil temperature reduces the risk mostly in lower altitudes and leaf skin reservoir content in the highest altitudes, as well as in the north region. Sustainability strategies, such as tree belts, agroforestry mosaics, and forest corridors emerge as crucial measures. The results underscore the importance of proactive measures in mitigating wildfire impact, offering actionable insights for crafting effective sustainability strategies amid escalating fire risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.