Abstract
Wildfire risk analysis can be based on historical data of fire hotspot occurrence. Traditional wildfire risk analyses often rely on the use of administrative or grid polygons which has their own limitations. This research aims to develop a wildfire risk map by implementing DBSCAN clustering method to identify areas with wildfire risk based on historical data of wildfire hotspot occurrence points. The risk ranks for each area/cluster were then ranked/calculated based on the cluster density. The result showed that this method is capable of detecting major clusters/areas with their respective wildfire risk and that the majority of consequent fire occurrences were repeated inside the identified clusters/areas.Keywords: wildfire risk map; clustering; DBSCAN; cluster density;
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advance Sustainable Science, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.