Abstract

Wildfire-altered soil may be an important source of polycyclic aromatic hydrocarbons (PAHs) in the environment. With projected increase of wildfire frequency and intensity due to changing global climate, understanding the quantity and speciation of PAHs, including halogenated PAHs (XPAHs), resulting from different burn intensities has important ramifications for environmental quality concerns and global soil carbon dynamics. Here, we quantified levels of 16 U.S. Environmental Protection Agency regulated PAHs, 3 chlorinated PAHs, and 6 brominated PAHs in nonburned forest soils and burned ash/soil samples covered with black ash (B-Ash; moderate burn intensity) or white ash (W-Ash; severe burn intensity) from the 2013 Rim Fire (1,041 km2) in California. The ∑16PAH concentrations follow (mean ± standard deviation; μg/kg) B-Ash (893 ± 285) > W-Ash (515 ± 333) ≈ nonburned soils (247 ± 58). Moreover, the ∑16PAH profiles were altered by both moderate and severe burn conditions with the size of aromatic structures...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call