Abstract
As pollinator decline is increasingly reported in natural and agricultural environments, cities are perceived as shelters for pollinators because of low pesticide exposure and high floral diversity throughout the year. This has led to the development of environmental policies supporting pollinators in urban areas. However, policies are often restricted to the promotion of honey bee colony installations, which resulted in a strong increase in apiary numbers in cities. Recently, competition for floral resources between wild pollinators and honey bees has been highlighted in semi-natural contexts, but whether urban beekeeping could impact wild pollinators remains unknown. Here, we show that in the city of Paris (France), wild pollinator visitation rates are negatively correlated to honey bee colony densities present in the surrounding landscape (500m –slope = -0.614; p = 0.001 –and 1000m –slope = -0.489; p = 0.005). Regarding the morphological groups of wild pollinators, large solitary bee and beetle visitation rates were negatively affected by honey bee colony densities within a 500m buffer (slope = -0.425, p = 0.007 and slope = - 0.671, p = 0.002, respectively) and bumblebee visitation rates were negatively affected by honey bee colony density within a 1000m buffer (slope = - 0.451, p = 0.012). Further, lower interaction evenness in plant-pollinator networks was observed with high honey bee colony density within a 1000m buffer (slope = -0.487, p = 0.008). Finally, honey bees tended to focus their foraging activity on managed rather than wild plant species (student t-test, p = 0.001) whereas wild pollinators equally visited managed and wild species. We advocate responsible practices mitigating the introduction of high density of honey bee colonies in urban environments. Further studies are however needed to deepen our knowledge about the potential negative interactions between wild and domesticated pollinators.
Highlights
The recent decline of pollinating insect populations is driven by a conjunction of factors, including habitat fragmentation, use of pesticides, multiplication of pathogens, global warming and the decline of the wild flora [1]
Visitation rates of wild pollinators were negatively related to the density of honey bee colonies at both spatial scales (Figs 3 and 4, and Table 1, 500m –slope = -0.614; p = 0.001 –and 1000m– slope = -0.489; p = 0.005)
We showed that in the city of Paris, the visitation rate of wild pollinators and especially the pollinating activity of large solitary bees, bumblebees and beetles, was negatively related to the density of honey bee colonies in the surrounding landscape
Summary
The recent decline of pollinating insect populations is driven by a conjunction of factors, including habitat fragmentation, use of pesticides, multiplication of pathogens, global warming and the decline of the wild flora [1]. Agricultural landscapes have changed, harbouring fewer floral resources and habitats to support diverse pollinating communities [2,3]. Many citizens have installed colonies as their own contribution to mitigate the pollinator decline [11,12] and urban introductions of honey bee colonies have been promoted by public authorities and decision makers. In many cities, this has translated into very recent and rapid increases in the number of honey bee colonies (e.g. 10 colonies per km in London–United Kingdom [13], 15 colonies per km in Brussels–Belgium [14])
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.