Abstract

Wild Gorillas Handy with a Stick

Highlights

  • While intelligent-design proponents enjoy their 15 minutes of fame denying the role of evolutionary forces in generating complex networks in nature, scientists are probing the organizing principles that govern these networks

  • These results suggest that both global constraints on the network and properties of network motifs themselves influence the abundance of motifs and the overall structure of a given network

  • The model yielded predictions that the authors validated experimentally: the extracellular signal-related kinase (ERK) response slows down dramatically at low ligand densities; negative feedback adjusts to ligand strength and quantity to prevent signaling by high concentrations of low-affinity ligands, and allows sensitive responses to low concentrations of high-affinity ligands; differential activation of the negative feedback explains the existence and hierarchy of antagonism in T cell activation; and mature differentiating T cells permit signaling with different levels of ligand discrimination, depending on intracellular concentrations of molecules such as SHP-1

Read more

Summary

Charting the Interplay between Structure and Dynamics in Complex Networks

While intelligent-design proponents enjoy their 15 minutes of fame denying the role of evolutionary forces in generating complex networks in nature, scientists are probing the organizing principles that govern these networks. Their results suggest that just as connections between individual components of a biological network—be they genes, proteins, or cells—influence function, the dynamic properties of a network motif relate to the motif’s function and could determine its prevalence in biological networks In this schematic of a transcriptional network, nodes represent operons (a set of bacterial structural genes and their regulatory elements) and links represent transcription factor DNA binding interactions. All the active regulatory motifs had a high stability score, suggesting that the nonrandom nature of the yeast transcriptional network may have arisen from selection acting on small motifs that respond robustly to specific environmental stresses Expanding their analysis to other biological networks, the authors found that yeast and the pathogen Escherichia coli have similar motif profiles, likely reflecting similar environmental pressures, while the fruit fly transcription program and worm neuron network contain different motifs, reflecting both different environmental and functional demands.

Wild Gorillas Handy with a Stick
Molecular Signatures of the Developing Hair Follicle
Charting the Path of the Deadly Ebola Virus in Central Africa
New Environments Set the Stage for Changing Tastes in Mates
Social Opportunity Produces Brain Changes in Fish
Temperature Regulates the Zebrafish Clock
Genetic and Behavioral Investigations into Odor Discrimination and Memory
Findings
Stimulating the Brain Makes the Fingers More Sensitive
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call