Abstract
Natural bio-ceramics have attracted extensive interests due to its high strength and high toughness, which can hardly be achieved in artificial ceramics simultaneously. In this work, the microstructure and properties of the wild boar's tusk enamel were investigated. The enamel was found to exhibit a hierarchical structure ranging from the hydroxyapatite (HAP) fibers (single or poly-crystals, nano-scale), enamel rods (micro-scale), enamel types (meso-scale) to enamel patterns (macro-scale). It is worth mentioning that the high-density and high-order hierarchical nanotwins were observed in the HAP fibers. The mechanical properties of the wild boar's tusk enamel showed strong anisotropy and were higher along the longitudinal direction than along the transverse direction. The mechanical properties varied from the dentin-enamel junction (DEJ) to the outer surface. The elastic modulus increased with the distance from the DEJ and then kept invariant. The nano-hardness increased in inner enamel but decreased in outer enamel. There was a peak of nano-hardness in inner enamel area. The fracture toughness showed an opposite tendency. It exhibited high values in inner enamel, but fell in the outer enamel zone. The irregular, decussating texture of the enamel, as well as the nanotwins/hierarchical nanotwins was considered as the main reason for its excellent mechanical properties. These unique structures of the wild boar's tusk enamel are expected to cast light on the design of medical materials and provide some guidelines to improve their mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.