Abstract

We propose a new technique, called wild binary segmentation (WBS), for consistent estimation of the number and locations of multiple change-points in data. We assume that the number of change-points can increase to infinity with the sample size. Due to a certain random localisation mechanism, WBS works even for very short spacings between the change-points and/or very small jump magnitudes, unlike standard binary segmentation. On the other hand, despite its use of localisation, WBS does not require the choice of a window or span parameter, and does not lead to a significant increase in computational complexity. WBS is also easy to code. We propose two stopping criteria for WBS: one based on thresholding and the other based on what we term the `strengthened Schwarz information criterion'. We provide default recommended values of the parameters of the procedure and show that it offers very good practical performance in comparison with the state of the art. The WBS methodology is implemented in the R package wbs, available on CRAN. In addition, we provide a new proof of consistency of binary segmentation with improved rates of convergence, as well as a corresponding result for WBS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.